Recommendations of specific chemicals are based upon information on the manufacturer’s label and performance in a limited number of trials. Because environmental conditions and methods of application by growers may vary widely, performance of the chemical will not always conform to the safety and pest control standards indicated by experimental data.

Recommendations for the use of agricultural chemicals are included in this publication as a convenience to the reader. The use of brand names and any mention or listing of commercial products or services in this publication does not imply endorsement by Auburn University, Clemson University, Louisiana State University, Mississippi State University, North Carolina State University, Oklahoma State University, Texas A&M, University of Florida, University of Georgia, University of Kentucky, University of Tennessee, and Virginia Tech nor discrimination against similar products or services not mentioned. Individuals who use agricultural chemicals are responsible for ensuring that the intended use complies with current regulations and conforms to the product label. Be sure to obtain current information about usage regulations and examine a current product label before applying any chemical. For assistance, contact your local county Extension office.

BE SURE TO CHECK THE PRODUCT LABEL BEFORE USING ANY PESTICIDE.

RESISTANCE MANAGEMENT AND THE INSECTICIDE RESISTANCE ACTION COMMITTEE (IRAC) CODES FOR MODES OF ACTION OF INSECTICIDES

Many insecticides affect a particular chemical involved in the function of an insect’s nervous, digestive, respiratory, or other system. Some broad-spectrum insecticides affect chemicals that occur in many places within the insect and have a wide ranging effect on the insect. Usually, these are older insecticides that have been in use for many years. The chemicals that these insecticides affect are often found in other animals as well. This can result in the insecticide having undesirable effects on these other animals (non-target effects). Also, non-target effects and persistence in nature have contributed to concerns about these older insecticides.

Many new insecticides have been developed over the last decade, specifically to minimize non-target effects and reduce persistence in the environment compared to older insecticides. This limited persistence in the environment also reduces the potential for non-target effects. However, the primary means of reducing non-target effects has been to make these newer insecticides very specific for a particular chemical (usually an enzyme produced by a single gene) found only in certain insects or groups of insects; thus making the insecticide selective for a particular type of insect. Unfortunately, there is a negative aspect to this specificity. Because only one enzyme is affected, the natural process of mutation can result in genetic modifications that alter the enzyme so that it is unaffected by the insecticide. Insects possessing the modified gene will not be affected by the particular insecticide. These insects will reproduce and, in time with continued exposure to the insecticide, will produce a population of insects that is resistant to the insecticide. Since most of the new insecticides have been developed to be very specific, resistance will develop much more quickly than with previous insecticides.

Different insecticides affect different enzymes, and insecticides are placed into classes based on which enzymes are affected. These classes are called **Modes of Action (MOA)**. Although insecticides may have different names, they can have the same mode of action and affect the same enzyme or system. It is the mode of action to which the insect will become resistant. Because of this, an insect management program **MUST** rotate the modes of action of the insecticides used during the cropping cycle. To prevent the development of resistance, it is important not to apply insecticides with the same mode of action to successive generations of the same insect. Insect development time can vary by species and environmental conditions, and generations often overlap in the field; proper scouting is necessary to determine when modes of action should be rotated. To make it easier to determine an insecticide’s mode of action, the **IRAC** has developed a numerical code with a different number corresponding to each mode of action. New packaging has been developed with a colored banner on the top of the package and label giving the **IRAC code**. For example, the insecticide, Movento®, has a new mode of action and the package says:

![GROUP 23 INSECTICIDES]

Growers can now easily identify the mode of action of a specific insecticide. This will help them to plan their rotation of materials to avoid rapid development of insecticide resistance and help prolong the life of these important new crop protection materials while providing adequate management of their pest problems. More information about insecticide resistance and a concise chart of all of the **IRAC codes** can be found at the website: www.irac-online.org.
GENERAL INFORMATION

LAWS AND REGULATIONS

Be sure to check current state and federal laws and regulations regarding the proper use, storage, and disposal of pesticides before applying any chemicals. For restricted-use pesticides, an applicator is required to be certified or to work under the direct supervision of a certified individual. Additional information on Worker Protection Standards (WPS) can be found at http://www.epa.gov/agriculture/htc.html.

CERTIFICATION—PESTICIDE APPLICATORS

The Federal Insecticide, Fungicide, and Rodenticide Act of 1972 (FIFRA) requires each state to set up a program to certify. This certification is designed to show that users of pesticides know how to use pesticides safely in order that they do not endanger the user, fellow humans, or the environment. Users of pesticides are classified as either private applicators or commercial applicators. The certification process is somewhat different for each group. The definitions of private and commercial applicators are as follows:

Private Applicator: Any person who uses, or supervises the use of a restricted-use pesticide for the purpose of raising some type of agricultural commodity. The application can be done on land owned or rented by the applicator or the applicator’s employer. However, any applications done on a “for-hire” basis are considered commercial applications. Examples of private applicators are dairy farmers, vegetable or fruit growers, greenhouse growers, and ranchers.

Commercial Applicator: Any person who uses, or supervises the use of pesticides on a “for-hire” basis; any person who applies pesticides for nonagricultural purposes; any person who applies pesticides as a part of his or her job with any governmental agency (public operator). Examples of commercial applicators are: terminators; landscapers; tree services; aerial applicators; weed-control firms; and owners of apartments, motels, nursing homes, restaurants, etc., who do their own pest control work.

For detailed information on certification of pesticide applicators, call your state’s Department of Agriculture or your local Extension office for information.

HANDLING PESTICIDES

Before opening a pesticide container, all applicators should carefully read the label, and accurately follow all directions and precautions specified on the labeling. In order to handle and apply pesticides safely, it is essential to use the proper personal protective equipment (PPE). For the custom or professional applicator, which includes both private and commercial applicators, safety equipment should at least consist of the PPE listed on the product label.

Your physician should be advised of the types of pesticides used in your work. Before the start of the spray season, each applicator should have a baseline blood cholinesterase level determined if you will be applying any organophosphate or carbamate insecticides.

When applying pesticides, be sure to have a decontamination site as required by the EPA’s Worker Protection Standards (WPS) and a supply of clean water and liquid detergent available for drenching and washing in case of an accident. A single drop of certain pesticides in the eye is extremely hazardous. Be prepared to wash a contaminated eye with clean water for 15 minutes.

Only an experienced applicator wearing the protective clothing and safety equipment required by the manufacturer should handle highly toxic pesticides, such as Guthion, Lannate, and Temik.

APPLYING PESTICIDES

Before using a pesticide, read and obey all labeling instructions. Always have the label readily available when applying a pesticide.

Do not handle or apply pesticides if you have a headache or do not feel well. Never smoke, eat or drink while using pesticides. Avoid inhaling pesticide sprays, dusts, and vapors.

If hands, skin, or other body parts become contaminated or exposed, wash the area immediately with clean water and a liquid detergent. If clothing becomes contaminated, remove it immediately. Wash contaminated clothing separately. After each spraying or dusting, bathe and change clothing; always begin the day with clean clothing.

Always have someone present or in close contact when using highly toxic pesticides -those with the signal word DANGER plus the skull and crossbones symbol.

APPLY THE CORRECT DOSAGE

- To avoid excessive residues on crops for feed and food
- To achieve optimum pest control and minimum danger to desirable organisms
- To avoid chemical damage to the crops
- To obtain the most economical control of pests.

Use pesticides for only those crops specified on the label, and use only those that have state and federal registration. Avoid drift to nontarget areas. Dusts drift more than sprays; airblast sprays drift more than boom sprays. When cleaning or filling application equipment, do not contaminate streams, ponds, or other water supplies. Keep a record of all pesticides used.

TREATED AREAS

Be sure all treated areas are posted so as to keep out unauthorized personnel. This should be a regular procedure for greenhouse operators.

REENTRY PERIOD

Persons must not be allowed to enter the treated area until after sprays have dried or dusts have settled and until sufficient time has passed to ensure that there is no danger of excessive exposure. This time period is listed on the pesticide label as the Restricted Entry Interval (REI). In no case during the reentry period are farm workers allowed to enter the treated area to engage in activity requiring substantial contact with the treated crop. PPE is required for any early entry into the treated area and is only allowed for trained applicators.
FARM WORKER SAFETY

Federal pesticide legislation sets an interval during which unprotected persons may not reenter areas treated with certain pesticides to ensure that there is no danger to excessive exposure. These intervals (days to reentry) are listed on each pesticide’s label. Points for special attention are:

1. No pesticide shall be applied while any person not involved in the application is in the field being treated.

2. No owner shall permit any worker not wearing protective clothing (that is, PPE) to enter a field treated with pesticides until sprays have dried or dusts have settled, unless they are exempted from such. **Protective clothing:** hat or head covering; woven, long-sleeved shirt and long-legged pants; and shoes and socks. Additional safety equipment may be needed.

3. Pesticides classified in EPA Category 1 have a reentry time of at least 24 hours.

4. If the label states a longer reentry time or has more stringent requirements than indicated here, the label restrictions must be followed. Existing safety standards specified on the label remain in force.

5. When workers are expected to be working in the vicinity of a field treated or to be treated with a pesticide, a timely (written or oral) warning to such workers shall be given.
 a. For all pesticides, workers must be warned by posting a bulletin board at all point(s) where workers might assemble. This bulletin board should include a map of the farm which designates the different areas of the farm that might be treated and listing of the following information:
 i. Location and name of crop treated
 ii. Brand and common chemical name of pesticide applied.
 b. Date of application
 c. Date of safe reentry into treated area
 d. When a pesticide having a reentry time greater than 7 days is applied, warning signs must be posted for the duration of the reentry time. The signs must be clearly readable at a distance of 25 feet and printed in English and the language of the worker, if other than English.
 e. The sign must contain the words:
 Danger
 Name of the pesticide
 Treatment date
 Do not enter until ______

6. The sign must not be removed during the reentry time, but must be removed before workers are allowed to have contact with the treated plants.

For additional information on these and other state farm worker safety regulations, contact the Pesticide Control Program office or the Cooperative Extension pesticide office in your state.

STORAGE

Pesticides should always be stored in their original containers and kept tightly closed. For the protection of others, especially firefighters, the storage area should be posted as **Pesticide Storage** and kept securely locked.

Herbicides, especially hormone-like weedkillers such as 2,4-D, should not be stored with other pesticides—primarily insecticides and fungicides—to prevent the accidental substitution of the herbicide for these chemicals.

Store the pesticides in a cool, dry, well-ventilated area that is not accessible to children and others who do not know and understand the safe and proper use of pesticides. Pesticides should be stored under lock and key. Special precautions may be needed in case of a fire in these storage areas.

Any restricted use pesticide (RUP) or container contaminated by restricted pesticides must be stored in a secure, locked enclosure while unattended. This enclosure must bear a warning that pesticides are stored there. In many states, it is illegal to store any pesticide in any container other than its original container.

Keep an inventory of all pesticides held in storage and locate the inventory list in an accessible place away from the storage site so that it may be referred to in case of an emergency at the storage site.

Keep your local fire department informed of the location of all pesticide storages. Fighting a fire that includes smoke from burning pesticides can be extremely hazardous to firefighters. Firefighters should be cautioned to avoid breathing any smoke from such a fire. A fire with smoke from burning pesticides may endanger the people of the immediate area or community. The people of an area or community may have to be evacuated if the smoke from a pesticide fire-drifts in their direction. To obtain Prefire Planning Guides, contact the US National Response Team (NRT) at http://www.nrt.org or at http://ipm.ncsu.edu (under “Information for Pesticide Applicators/Dealers”).

PESTICIDE TRANSPORT

Containers must be well-secured to prevent breakage or spillage. An adequate supply of absorbent material, a shovel, and a fire extinguisher must be available. While under transport, pesticides must be stored in a separate compartment from the driver. All pesticide containers and equipment must be secured to the vehicle so as to prevent removal by unauthorized person(s) when the vehicle is unattended. The door or hatch of any service vehicle tank containing a pesticide must be equipped with a cover that will prevent spillage when the vehicle is in motion.

Pesticide Formulation
- **WP, SP, WGD**
- **EC**
- **Oil**

General Signs of Deterioration
- **Milky appearance does not occur when water is added.**
- **Evidence of separation is such as a sludge or sediment**
- **Excessive lumping; powder does not suspend in water.**
- **Excessive lumping or caking.**

After freezing, place pesticides in warm storage [50°-80°F] and shake or roll container every few hours to mix product or eliminate layering. If layering persists or if all crystals do not completely dissolve, do not use the product. If in doubt, call the manufacturer.
The above requirements do not apply if the pesticide is being transported within the application equipment tank.

For additional information on pesticide transport, contact the state Pesticide Control Program office or Extension.

DISPOSAL

Pesticides should not be disposed of in sanitary landfills or by incineration, unless these locations and equipment are especially designed and licensed for this purpose by the state.

The best method to dispose of a pesticide is to use it in accordance with current label registrations. The triple rinse-and-drain (see below) procedure or the pressure-rinse procedure (see below) is the recommended method to prepare pesticide containers for safe disposal. This method can save money as well as protect the environment.

Crush or puncture the container for disposal in a sanitary landfill or deposit in landfills that accept industrial waste, or deliver the intact container to a drum reconditioner or recycling plant. Check with the landfill operator prior to taking empty containers for disposal. For additional information on the disposal of pesticides themselves or unrinsed containers or rinsate, call the state agency responsible for hazardous wastes. See back cover for telephone numbers.

Triple Rinse–and–Drain Method. To empty a pesticide container for disposal, drain the container into the spray tank by holding the container in a vertical position for 30 seconds. Add water to the pesticide container. Agitate the container thoroughly, then drain the liquid (rinsate) into the spray tank by holding in a vertical position for 30 seconds. Repeat two more times. Puncture or otherwise create a hole in the bottom of the pesticide container to prevent its reuse.

Pressure Rinse Method. An optional method to rinse small pesticide containers is to use a special rinsing device on the end of a standard water hose. The rinsing device has a sharp probe to puncture the container and several orifices to provide multiple spray jets of water. After the container has been drained into the sprayer tank (container is upside down), jab the pointed pressure rinser through the bottom of the inverted container. Rinse for at least 30 seconds. The spray jets of water rinse the inside of the container and the pesticide residue is washed down into the sprayer tank for proper use. Thirty seconds of rinse time is equivalent to triple rinsing. An added benefit is that the container is rendered unusable.

PROTECT OUR ENVIRONMENT

- Do not burn pesticides. The smoke from burning pesticides is dangerous and can pollute air.
- Do not dump pesticides in sewage disposal or storm sewers because this will contaminate water.
- Avoid using excess quantities of pesticides. Calibrate sprayers to make sure of the output.
- Adjust equipment to keep spray on target. Chemicals off-target pollute and can do harm to fish, wildlife, honey bees, and other desirable organisms.

Keep pesticides out of ponds, streams, and water supplies, except those intended for such use. A small amount of drift can be hazardous to food crops and to wildlife. Empty and clean sprayers away from water areas (such as ponds, lakes, streams, etc.)

Protect bees and other beneficial insects by choosing the proper chemical and time of day for application. See additional precautions in section "Protecting Our Groundwater."

MINIMIZE SPRAY DRIFT

- Avoid spraying when there is strong wind.
- Use large orifice nozzles at relatively low pressure.
- Use nozzles that do not produce small droplets.
- Adjust boom height as low as practical.
- Do not spray at high travel speeds.
- Spray when soil is coolest and relative humidity is highest.
- Use nonvolatile pesticides.
- Use drift control additives when permitted by the pesticide label.

PESTICIDE POISONING

If any of the following symptoms are experienced during or shortly after using pesticides: headache, blurred vision, pinpoint pupils, weakness, nausea, cramps, diarrhea, and discomfort in the chest, seek medical assistance immediately. Be sure to take a copy of the pesticide label. For minor symptoms, call the appropriate Poison Control Center in your state. See back cover for emergency telephone numbers. Prompt action and treatment may save a life.

IN CASE OF AN ACCIDENT

Remove the person from exposure:

- Get away from the treated or contaminated area immediately.
- Remove contaminated clothing.
- Wash with soap and clean water.
- Call a physician and the state Poison Control Center or Agency. See back cover for emergency telephone numbers.
- Be prepared to give the active ingredient name (common name).

PESTICIDE SPILLS

Keep a supply of absorbent on hand to scatter over liquid spills in the storage room. Sawdust or janitorial sweeping compound works well in absorbing the liquids in a cleanup. Use a respirator and rubber gloves to clean up spills; cover the contaminated surface with household lye, trisodium phosphate, or liquid detergent. Let it soak a couple of hours and reabsorb the solution from the floor. This procedure is recommended for cleaning truck beds that are contaminated. Specific information concerning pesticide cleanup can be obtained by calling the manufacturer directly. The phone numbers for emergencies are listed on every product label. Information can also be obtained by calling CHEMTREC at 800/424-9300. Report pesticide spills to the proper state agency. See back cover for telephone numbers.
RESPIRATORY PROTECTIVE DEVICES FOR PESTICIDES

For many toxic chemicals, the respiratory (breathing) system is the quickest and most direct route of entry into the circulatory system. From the blood capillaries of the lungs, these toxic substances are rapidly transported throughout the body.

Respiratory protective devices vary in design, use, and protective capability. In selecting a respiratory protective device, the user must first consider the degree of hazard associated with breathing the toxic substance, and then understand the specific uses and limitations of the available equipment. Select a respirator that is designed for the intended use, and always follow the manufacturer’s instructions concerning the use and maintenance of that particular respirator. Different respirators may be needed for application of different chemicals or groups of chemicals. Select only equipment approved by the National Institute of Occupational Safety and Health (NIOSH). The NIOSH approval numbers begin with the letters TC. NOTE: The label will specify which respirator is needed for that particular pesticide.

TYPES OF RESPIRATORS

Respiratory protective devices can be categorized into three classes: air-purifying, supplied-air, and self-contained. Because most pesticide contaminants can be removed from the atmosphere by air-purifying devices, we will look at these in greatest detail.

Air-purifying devices include chemical cartridge respirators, mechanical filters, gas masks (also referred to as canister filter respirators), and battery powered respirators. They can be used only in atmospheres containing sufficient oxygen to sustain life.

- Chemical cartridge respirators provide respiratory protection against certain gases and vapors in concentrations not greater than 0.1% by volume, provided that this concentration does not exceed an amount that is immediately dangerous to life and health. They are for use only when exposure to high continual concentrations of pesticide is unlikely, such as when mixing pesticides outdoors. They are available either as halfmasks, covering only the nose and mouth, or as full-facepiece respirators for both respiratory and eye protection.

- Mechanical filter respirators (dust masks) provide respiratory protection against particulate matter such as mists, metal fumes, and nonvolatile dusts. They are available either as disposable or reusable halfmasks that cover the nose and mouth, or as reusable full-facepieces. Dust masks should never be used when mixing or applying liquids because splashed or spilled liquids, or pesticide vapors can be absorbed by the mask.

- Many respiratory protective devices are combinations of chemical cartridge and mechanical filter (prefilter) respirators. These can provide respiratory protection against both gases and particulate matter.

- Full-face piece respirators provide respiratory protection against particulate matter, and/or against certain specific gases and vapors, provided that their concentration does not exceed an amount that is immediately dangerous to life and health. Gas masks, like full-facepieces, cover the eyes, nose, and mouth, but will last longer than cartridges when continuously exposed to some pesticides. A gas mask will not, however, provide protection when the air supply is low. A special respirator with a self-contained air supply should be worn in these situations.

- Battery powered air-purifying respirators equipped with pesticide filters/cartridges are also effective in filtering out pesticide particles and vapors. They are available as halfmasks, full-face masks, hoods, and protective helmets, and are connected by a breathing hose to a battery powered filtration system. This type of filtration system has the additional advantage of cooling the person wearing it. But, like other air purifying devices, this system does not supply oxygen and must be worn only when the oxygen supply is not limited.

Chemical cartridge respirators protect against light concentrations of certain organic vapors. However, no single type of cartridge is able to remove all kinds of chemical vapors. A different type of chemical cartridge (or canister) must be used for different contaminants. For example, cartridges and canisters that protect against certain organic vapors differ chemically from those that protect against ammonia gases. Be sure that the cartridge or canister is approved for the pesticide you intend to use. Cartridge respirators are not recommended for use against chemicals that possess poor warning properties. Thus, the user’s senses (smell, taste, irritation) must be able to detect the substance at a safe level if cartridge respirators are to be used correctly.

The effective life of a respirator cartridge or canister depends on the conditions associated with its use—such as the type and concentration of the contaminants, the user’s breathing rate, and the humidity. Cartridge longevity is dependent on its gas and vapor adsorption capacity. When the chemical cartridge becomes saturated, a contaminant can pass through the cartridge, usually allowing the user to smell it. At this point, the cartridge must be changed immediately. There are times when the mechanical prefilter also needs to be changed. A prefilter should be replaced whenever the respirator user feels that breathing is becoming difficult. Dispose of all spent cartridges to avoid their being used inadvertently by another applicator who is unaware of their contaminated condition.

Chemical cartridge respirators cannot provide protection against extremely toxic gases such as hydrogen cyanide, methyl bromide, or other fumigants. Masks with a self-contained air supply are necessary for these purposes.

USE AND CARE OF RESPIRATORS

Respirators are worn as needed for protection when handling certain pesticides. The use of respirators is now regulated requiring a health screening prior to their use by a health professional. This is due in part to the Fumigant re-registration decisions by EPA. These prerequisites are outlined in the OSHA Respiratory Protection Act. Prior to using a respirator, read and understand the instructions on the cartridge or canister and all supplemental information about its proper use and care. Be sure the filter is approved for protection against the pesticide intended to be used. Respirators labeled only for protection against particulates must not be used for gases and vapors. Similarly, respirators labeled only for protection against gases and vapors should not be used for particulates. Remember, cartridges and filters do not supply oxygen. Do
not use them where oxygen may be limited. All respirators must be inspected for wear and deterioration of their components before and after each use. Special attention should be given to rubber or plastic parts which can deteriorate. The facepiece, valves, connecting tubes or hoses, fittings, and filters must be maintained in good condition.

All valves, mechanical filters, and chemical filters (cartridges or canisters) should be properly positioned and sealed. Fit the respirator on the face to ensure a tight but comfortable seal. Facial hair will prevent a tight seal and consequently OSHA regulations prohibit the use of a respirator when the user has a beard or facial hair. Two tests can be done to check the fit of most chemical cartridge respirators. The first test requires that you place your hand tightly over the outside exhaust valve. If there is a good seal, exhalation should cause slight pressure inside the facepiece. If air escapes between the face and facepiece, readjust the headbands until a tight seal is obtained. Readjusting the headbands may at times not be sufficient to obtain a good seal. It may be necessary to reposition the facepiece to prevent air from escaping between the face and facepiece. The second test involves covering the inhalation valve(s) by placing a hand over the cartridge(s). If there is a good seal, inhalation should cause the facepiece to collapse. If air enters, adjust the headbands or reposition the facepiece until a good seal is obtained.

Get to fresh air immediately if any of the following danger signals are sensed:

- Contaminants are smelled or tasted
- Eyes, nose, or throat become irritated
- Breathing becomes difficult
- The air being breathed becomes uncomfortably warm
- Nauseous or dizzy sensations are experienced

Cartridges or filters may be used up or abnormal conditions may be creating contaminant concentrations which exceed the capacity of the respirator to remove the contamination.

After each use of the respirator, remove all mechanical and chemical filters. Wash the facepiece with soap and warm water, and then immerse it in a sanitizing solution such as household bleach (two tablespoons per gallon of water) for two minutes, followed by a thorough rinsing with clean water to remove all traces of soap and bleach. Wipe the facepiece with a clean cloth and allow to air dry.

Store the respirator facepiece, cartridges, canisters, and mechanical filters in a clean, dry place, preferably in a tightly sealed plastic bag. Do not store respirators with pesticides or other agricultural chemicals.

Handle respirators with the same care given to other protective equipment and clothing.

PROTECTING OUR GROUNDWATER

Groundwater is the water contained below the topsoil. This water is used by 90% of the rural population in the United States as their sole source of drinking water. Contamination of the water supply by pesticides and other pollutants is becoming a serious problem. One source of contamination is agricultural practices.

Protection of our groundwater by the agricultural community is essential.

Groundwater collects under our soils in aquifers that are comprised of layers of sand, gravel, or fractured bedrock which, by their nature, hold water. This water comes from rainfall, snowfall, etc., that moves down through the soil layers to the aquifer. The depth of the aquifer below the surface depends on many factors. Where it is shallow, we see lakes, ponds and wetlands. In areas where it is deep, we find arid regions.

FACTORS THAT AFFECT MOVEMENT OF WATER AND CONTAMINANTS

The depth of aquifers, in conjunction with soil types, influences how much surface water reaches the aquifer. Their depth also affects how quickly water and contaminants reach an aquifer. Thus, shallow water tables tend to be more vulnerable to contamination than deeper ones.

This tendency, however, depends on the soil type. Soils with high clay or organic matter content may hold water longer and retard its movement to the aquifer. Conversely, sandy soils allow water to move downward at a fast rate. High levels of clay and/or organic content in soils also provide a large surface area for binding contaminants that can slow their movement into groundwater. Soil texture also influences downward water movement. Finer textured soils have fewer spaces between particles than coarser ones, thus decreasing movement of water and contaminants.

CHEMISTRY PLAYS A ROLE

The characteristics of an individual pesticide affect its ability to reach groundwater. The most important characteristics are solubility in water, adsorption to soils, and persistence in the environment.

Pesticides that are highly soluble in water have a higher potential for contaminating groundwater than those that are less soluble. The water solubility of a chemical indicates how much chemical will dissolve in water and is measured in parts per million (ppm). Those chemicals with a water solubility greater than 30 ppm may create problems. Be sure to read the Environmental Precautions on each pesticide label.

A chemical’s ability to adhere to soil particles plays an important role. Chemicals with a high affinity for soil adsorption are less likely to reach the aquifer. Adsorption is also affected by the amount of organic matter in the soil. Soils with high organic matter content are less vulnerable than those with low organic matter content.

Finally, how persistent a chemical is in the environment may affect its ability to reach groundwater. Those that persist for a long time may be more likely to cause contamination than materials that breakdown quickly. Persistence is measured by the time it takes half of a given pesticide to degrade. This is called the chemical’s half-life. Chemicals with an overall estimated half-life longer than 3 weeks pose a threat to groundwater.

HOW TO PREVENT CONTAMINATION OF GROUND WATER

Examine the chemical properties of the pesticides used. If using materials that persist for long periods of time, are very water soluble, or are not tightly held by the soil, then your groundwater...
may become contaminated. Another material may be selected that has a shorter persistence, lower water solubility, or higher potential for soil adsorption. The following chart assists with these decisions.

1. Determine the local soil and geologic circumstances. If in an area with a shallow water table or the soil is low in organic matter or sandy in nature, there is a greater risk of contaminating your groundwater. In these cases, choose a pesticide that has a low water solubility and is not persistent.

2. Evaluate management practices. These practices maybe the most important factors in determining the risk of contaminating groundwater. If the same materials are used year after year, or many times a season, the potential for contamination can be increased due to the amount of pesticide in the soil. The timing of pesticide applications has an effect on groundwater contamination. If applications during periods of high rainfall or heavy irrigation are made, it is more likely that contamination may occur. Also, the water table in the spring may be higher than at other times. Early season applications, therefore, may pose a greater chance for groundwater contamination.

3. The method of application may have an effect. Direct injection, incorporation, and chemigation all increase the chance of contamination. If using these techniques, be sure to follow the procedures listed on the material’s label.

4. The location of wells can be important. If the sprayer loading area or pesticide storage building is too close to a well, the risk of contamination may be greater. Wells should be located a minimum distance from all pesticide storage and loading areas. This distance differs between states but is generally between 50 and 100 ft. In the event of an accident, this distance should prevent contamination. This minimum distance should also be followed for field irrigation wells. If they are too close to application areas, contamination might occur.

5. Check the condition of any wells in the vicinity of sprayer loading areas, pesticide storage areas, or field applications. If they have cracked casings trouble is being invited. Cracks in a well casing provide a direct point of entry for pesticide-contaminated water that is in the soil.

6. Use some type of anti back-flow device in any system used for chemigation or to fill the sprayer with water. In the event of a pump shutoff or other failure, if any back-flow into the water system occurs, these devices will prevent pesticides from entering the well. Many state laws require that anti back-flow devices be placed on all sprayer water intake systems prior to the water entering the tank. The use of an air gap only is no longer acceptable in some states.

7. Care and maintenance of equipment is also an important consideration. If the equipment does not function properly, over-delivery may occur, which increases the chance of groundwater contamination. Prior to the beginning of the season, inspect all of the working parts of the sprayer or chemigation system. Check the pump to ensure that it is working properly. For both sprayers and chemigation systems, check the water lines for clogs and leaks. For sprayers, check the nozzles for wear and clogs. Clogged, leaking, or worn lines and nozzles can cause pesticides to be delivered in too high an amount or into unwanted areas. Be sure to calibrate equipment. Uncalibrated equipment can cause over-delivery as well. Equipment should be calibrated at the beginning of the season, periodically during the remainder of the season, and any time changes or adjustments are made to the equipment.

8. Apply materials only when needed. The use of pesticides, when not needed, can increase the threat of contamination. Check irrigation practices as well. Do not irrigate immediately after a pesticide application, unless required by a pesticide’s label. The increased water content in the soil might speed up the downward movement of a pesticide.

REMEMBER, GROUNDWATER MUST BE PROTECTED.
TOXICITY OF CHEMICALS USED IN PEST CONTROL

The danger in handling pesticides does not depend exclusively on toxicity values. Hazard is a function of both toxicity and the amount and type of exposure. Some chemicals are very hazardous from dermal (skin) exposure as well as oral (ingestion). Although inhalation values are not given, this type of exposure is similar to ingestion. A compound may be highly toxic but present little hazard to the applicator if the precautions are followed carefully.

Toxicity values are expressed as acute oral LD$_{50}$ in terms of milligrams of the substance per kilogram (mg/kg) of test animal body weight required to kill 50 percent of the population. The acute dermal LD$_{50}$ is also expressed in mg/kg. These acute values are for a single exposure and not for repeated exposures such as may occur in the field. Rats are used to obtain the oral LD$_{50}$ and the test animals used to obtain the dermal values are usually rabbits.

CATEGORIES OF TOXICITY

<table>
<thead>
<tr>
<th>Categories</th>
<th>Signal Word</th>
<th>LD$_{50}$ Value (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Danger-Poison</td>
<td>0 – 50</td>
</tr>
<tr>
<td>II</td>
<td>Warning</td>
<td>50-500</td>
</tr>
<tr>
<td>III</td>
<td>Caution</td>
<td>500-5,000</td>
</tr>
<tr>
<td>IV</td>
<td>None2</td>
<td>5,000-20,000</td>
</tr>
</tbody>
</table>

1EPA accepted categories.

2No signal word required based on acute toxicity; however, products in this category usually display “Caution.”

To determine an exact weight, multiply known body weight in pounds by 0.45. Example: 100 lb x 0.45 = 45 kg

Note: All the following calculations use a body weight of 100 pounds. To determine the LD$_{50}$, first convert body weight to kilograms; to do this multiply weight in lb by 0.45. Example: 100 x 0.45 = 45 kg

Next, multiply given LD$_{50}$ by body weight in kg. Note: LD$_{50}$ numbers are given by the manufacturer. Example: LD$_{50}$ of 11 x 45 kg = 495 mg

Next, to convert milligrams (mg) to ounces (oz), multiply mg by 0.000035. Example: 495 mg x 0.000035 = 0.017 oz.

The following is a chart of LD$_{50}$ figures converted to ounces for three commonly used products in the agricultural industry.

<table>
<thead>
<tr>
<th>Body Weight in Pounds</th>
<th>Insecticide</th>
<th>Herbicide</th>
<th>Fungicide</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>11</td>
<td>1,800</td>
<td>10,000</td>
</tr>
<tr>
<td>60</td>
<td>0.006</td>
<td>0.9</td>
<td>4.9</td>
</tr>
<tr>
<td>100</td>
<td>0.010</td>
<td>1.7</td>
<td>9.5</td>
</tr>
<tr>
<td>150</td>
<td>0.017</td>
<td>2.8</td>
<td>15.7</td>
</tr>
<tr>
<td>200</td>
<td>0.026</td>
<td>4.3</td>
<td>23.8</td>
</tr>
<tr>
<td></td>
<td>0.035</td>
<td>5.7</td>
<td>31.5</td>
</tr>
</tbody>
</table>

CONVERSIONS: BODY WEIGHT IN POUNDS (LB) TO BODY WEIGHT IN KILOGRAMS (KG)

<table>
<thead>
<tr>
<th>(lb)</th>
<th>(kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>11.25</td>
</tr>
<tr>
<td>50</td>
<td>22.5</td>
</tr>
<tr>
<td>75</td>
<td>33.75</td>
</tr>
<tr>
<td>100</td>
<td>45</td>
</tr>
</tbody>
</table>

Note: All the following calculations use a body weight of 100 pounds. To determine the LD$_{50}$, first convert body weight to kilograms; to do this multiply weight in lb by 0.45. Example: 100 x 0.45 = 45 kg

Next, multiply given LD$_{50}$ by body weight in kg. Note: LD$_{50}$ numbers are given by the manufacturer. Example: LD$_{50}$ of 11 x 45 kg = 495 mg

Next, to convert milligrams (mg) to ounces (oz), multiply mg by 0.000035. Example: 495 mg x 0.000035 = 0.017 oz.

The following is a chart of LD$_{50}$ figures converted to ounces for three commonly used products in the agricultural industry.

<table>
<thead>
<tr>
<th>Body Weight in Pounds</th>
<th>Insecticide</th>
<th>Herbicide</th>
<th>Fungicide</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>11</td>
<td>1,800</td>
<td>10,000</td>
</tr>
<tr>
<td>60</td>
<td>0.006</td>
<td>0.9</td>
<td>4.9</td>
</tr>
<tr>
<td>100</td>
<td>0.010</td>
<td>1.7</td>
<td>9.5</td>
</tr>
<tr>
<td>150</td>
<td>0.017</td>
<td>2.8</td>
<td>15.7</td>
</tr>
<tr>
<td>200</td>
<td>0.026</td>
<td>4.3</td>
<td>23.8</td>
</tr>
<tr>
<td></td>
<td>0.035</td>
<td>5.7</td>
<td>31.5</td>
</tr>
</tbody>
</table>

Note: All the following calculations use a body weight of 100 pounds. To determine the LD$_{50}$, first convert body weight to kilograms; to do this multiply weight in lb by 0.45. Example: 100 x 0.45 = 45 kg

Next, multiply given LD$_{50}$ by body weight in kg. Note: LD$_{50}$ numbers are given by the manufacturer. Example: LD$_{50}$ of 11 x 45 kg = 495 mg

Next, to convert milligrams (mg) to ounces (oz), multiply mg by 0.000035. Example: 495 mg x 0.000035 = 0.017 oz.

The following is a chart of LD$_{50}$ figures converted to ounces for three commonly used products in the agricultural industry.

<table>
<thead>
<tr>
<th>Body Weight in Pounds</th>
<th>Insecticide</th>
<th>Herbicide</th>
<th>Fungicide</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>11</td>
<td>1,800</td>
<td>10,000</td>
</tr>
<tr>
<td>60</td>
<td>0.006</td>
<td>0.9</td>
<td>4.9</td>
</tr>
<tr>
<td>100</td>
<td>0.010</td>
<td>1.7</td>
<td>9.5</td>
</tr>
<tr>
<td>150</td>
<td>0.017</td>
<td>2.8</td>
<td>15.7</td>
</tr>
<tr>
<td>200</td>
<td>0.026</td>
<td>4.3</td>
<td>23.8</td>
</tr>
<tr>
<td></td>
<td>0.035</td>
<td>5.7</td>
<td>31.5</td>
</tr>
</tbody>
</table>