VIII. WolfTrax Micronutrients

2007 Corn Seed Treatment Trial With WolfTrax Zn

Cooperators: Producer: David, John & Stanley Hula, Renwood Farm -
Extension: Paul Davis, New Kent/Charles City
Virginia Tech: Wade Thomason
John Townsend, Summer Intern
Agribusiness: Southern States Coop., King William Store
FRR: Phil Egolf and Phil Troutman*

Hybrid: SS574 RR/YG
Plant Population: 32,000
Previous Crop: Soybeans
Soil Type: Pamunkey fine sandy loam
Planting Date: May 2, 2007
Fertilizer:
- Broadcast: 45-60-90 + Avail®
- Starter: 70.0 lb N
- Sidedress: 120.0 lb N + NutriSphere-N™
Herbicides:
- Preplant: 26.0 oz Roundup Original
- Pre-emergence: 1.8 qt Bicep II Magnum® + 1.0 pt Aatrex®
Harvest Date: September 29, 2007

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Rep 1</th>
<th>Rep 2</th>
<th>Rep 3</th>
<th>Rep 4</th>
<th>Avg. % Moisture</th>
<th>Avg. bu/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- No Zn</td>
<td>182.3</td>
<td>213.0</td>
<td>219.5</td>
<td>200.3</td>
<td>14.2</td>
<td>203.8</td>
</tr>
<tr>
<td>2- WolfTrax Zn</td>
<td>205.3</td>
<td>208.6</td>
<td>207.7</td>
<td>213.1</td>
<td>14.2</td>
<td>208.7</td>
</tr>
</tbody>
</table>

Discussion: The addition of WolfTrax Zn seed treatment increased yields by 5 bushels but this was not significantly different. Please compare to other Zn seed treatment studies before making your planting decisions.

*Special thanks to the FFR staff who planted, fertilized and harvested all the corn hybrid plots.
“WolfTrax” Seed-Applied Micronutrients

Cooperators: Producer: Robert Bland IV
Extension: David Moore, Middlesex
Keith Balderson, Essex

Previous Crop: Soybeans
Plant Date: April 24, 2007
Soil Type: Suffolk Fine Sandy Loam
Fertilization: 40-50-120; 50.0 lb N with pesticides; 75.0 lb N dribbled
Crop Protection: Roundup® + atrazine + simazine + Lumax®
Hybrid: TA Seeds 678-00
Treatment: Zinc WolfTrax treatment at 2.5 oz/bag
Harvest Date: September 20, 2007

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Moisture%</th>
<th>Yield @ 15.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated (3 rows)</td>
<td>16.3</td>
<td>121.7</td>
</tr>
<tr>
<td>Treated</td>
<td>16.1</td>
<td>128.3</td>
</tr>
<tr>
<td>Untreated</td>
<td>16.1</td>
<td>120.5</td>
</tr>
<tr>
<td>Treated</td>
<td>15.9</td>
<td>123.5</td>
</tr>
<tr>
<td>Untreated</td>
<td>16.0</td>
<td>116.9</td>
</tr>
<tr>
<td>Treated</td>
<td>16.0</td>
<td>127.1</td>
</tr>
<tr>
<td>Untreated (3 rows)</td>
<td>15.9</td>
<td>112.5</td>
</tr>
<tr>
<td>Average Treated:</td>
<td>126.3 bushels</td>
<td></td>
</tr>
<tr>
<td>Average Untreated:</td>
<td>117.9 bushels</td>
<td></td>
</tr>
</tbody>
</table>

LSD: 8.3 bushels

Discussion: The actual amount of Zn applied was less than an ounce per acre. It is difficult to believe that this treatment made any difference in yields, but this test does show a statistical increase in yield in the “WolfTrax” plots. Cost of treatment was approximately $1.00 per acre. Phosphorous levels in the soil, according to soil test, were very high which does make Zn less available to the plant. Maybe this Zn on the seed treatment provided the zinc the plant needed in this case.

With grain prices higher than normal, look for many new products on the market claiming to improve yields. Do some trials of your own, or call your Extension agent to assist with some replicated trials to help you make informed production decisions. Use this and other Virginia Tech replicated corn plot information when making planting decisions for 2008.