Evaluation of Household Water Quality in Nelson County, Virginia
NOVEMBER 2010
VIRGINIA HOUSEHOLD WATER QUALITY PROGRAM

Background

More than 1.7 million Virginia households use private water supplies such as wells, springs and cisterns. The Virginia Household Water Quality Program (VAHWQP) began in 1989 with the purpose of improving the water quality of Virginians reliant on private water supplies. Since then drinking water clinics have been conducted in 86 counties across Virginia and samples analyzed from more than 14,500 households. In 2007, the Virginia Master Well Owner Network (VAMWON) was formed to support the VAHWQP. Virginia Cooperative Extension agents and volunteers participate in a 1 day VAMWON training workshop that covers private water system maintenance and protection, routine water testing, and water treatment basics. They are then able to educate others about their private water supplies. More information about these programs may be found at our website: www.wellwater.bse.vt.edu.

Private water sources, such as wells and springs, are not regulated by the U.S. Environmental Protection Agency (EPA). Although private well construction regulations exist in Virginia, private water supply owners are responsible for maintaining their water systems, for monitoring water quality, and for taking appropriate steps to address problems should they arise. The EPA public drinking water standards are good guidelines for assessing water quality. Primary drinking water standards apply to contaminants that can adversely affect health and are legally enforceable for public water systems. Secondary drinking water standards are non-regulatory guidelines for contaminants that may cause nuisance problems such as bad taste, foul odor, or staining. Testing water annually, and routinely inspecting and maintaining a water supply system will help keep water safe.

Geology

The western edge of Nelson County lies within the Blue Ridge physiographic province of Virginia. The Blue Ridge province is a relatively narrow zone to the west of the Piedmont province with some of the highest elevations in the state. Beneath a thin layer of soil and weathered rock lies the bedrock, a relatively impervious zone containing water primarily in joints, fractures, and faults. On the eastern side of the Blue Ridge, igneous and metamorphic rocks are most common; sedimentary rocks are more common on the western side. Steep terrain and thin soil covering result in rapid surface run-off and low groundwater recharge. The lower slopes of the mountains are the most favorable areas for groundwater accumulation. Springs are common and are often used for private water supplies. Because the rocks in the Blue Ridge are relatively insoluble, the ground water is not severely mineralized, but iron content is high in some locations (GWPSC, 2008).

The eastern portion of Nelson County lies in the Piedmont physiographic province. The Piedmont province extends from the Blue Ridge Mountains to the center of the state. Hard, crystalline, igneous and metamorphic formations dominate this region interspersed with some areas of sedimentary rocks. Most significant water supplies are found within a few hundred feet of the surface due to the size and number of faults and fractures that store and transmit ground water. Because of the diverse geology in this region there are wide variations in ground water quality and well yields, with ground water use at many locations limited. A few areas, for example, have problems with high iron concentrations and acidity. Because of the range in ground water quality and quantity in this region, as well as the varying potential for contamination, well site evaluation and routine water quality monitoring is very important here (GWPSC, 2008).
Overview

In November 2010, 29 residents from Nelson County participated in a drinking water clinic sponsored by the local Virginia Cooperative Extension (VCE) offices and the Virginia Household Water Quality Program. Clinic participants received a confidential water sample analysis and attended educational meetings where they learned how to interpret their water test results and address potential issues. The most common household water quality issues identified as a result of the analyses for the participants were elevated levels of manganese, low pH and the presence of total coliform bacteria. Figure 1, found at the end of this report, shows these common water quality issues along with basic information on standards, causes, and treatment options.

Drinking Water Clinic Process

Any Nelson County resident relying on a well, spring, or cistern was welcome to participate in the clinic. Advertising began 8 weeks prior to the first meeting and utilized local media outlets, announcements at other VCE meetings, and word of mouth. Pre-registration was encouraged.

Kickoff meeting: Participants were given a brief presentation that addressed common water quality issues in the area, an introduction to parameters included in the analysis, and instructions for collecting their sample. Sample kits with sampling instructions and a short questionnaire were distributed. The questionnaire was designed to collect information about characteristics of the water supply (e.g. age, depth, and location), the home (e.g. age, plumbing materials, existing water treatment), and any existing perceived water quality issues. The purpose of the clinic is to build awareness among private water supply users about protection, maintenance, and routine testing of their water supply.

Participants were instructed to drop their samples and completed questionnaires off at a predetermined location on a specific date and time.

Sample collection: Following collection at a central location, all samples were iced in coolers and promptly transported to Virginia Tech for analysis.

Analysis: Samples were analyzed for the following water quality parameters: iron, manganese, nitrate, chloride, fluoride, sulfate, pH, total dissolved solids (TDS), hardness, sodium, copper, total coliform bacteria, and E. coli. General water chemistry and bacteriological analyses were performed by the Department of Biological Systems Engineering Water Quality Laboratory at Virginia Tech. The Virginia Tech Soils Testing Laboratory performed the elemental constituent analyses. All water quality analyses were performed using standard analytical procedures.

The Environmental Protection Agency (EPA) Safe Drinking Water Standards, which are enforced for public water systems in the U.S., were used as guidelines for this program. Water quality parameters out of range of these guidelines were identified on each test report. Test reports were prepared and sealed in envelopes for confidential distribution to clinic participants.

Interpretation meeting: At this meeting, participants received their confidential water test reports, and VCE personnel made a presentation providing a general explanation of what the numbers on the reports indicated. In addition, general tips for maintenance and care of private water supply systems, routine water quality testing recommendations, and possible options for correcting water problems were discussed. Participants were encouraged to ask questions and discuss findings either with the rest of the group or one-on-one with VCE personnel after the meeting.

Findings and Results

Profile of Household Water Supplies

The questionnaire responses, provided by all 29 participants at the clinic, helped to characterize the tested water supplies. All participants in the clinic indicated their water supply was a well.

Participants were asked to classify their housing location as one of four categories. The choices, ranging from low to high density development, are: (1) on a farm, (2) on a remote, rural lot, (3) in a rural community, and (4) in a housing subdivision.

For the Nelson clinic, rural community was the most common household setting (41%), followed by rural area (24%) and farm (21%).

Major sources of potential contamination near the home (within 100 feet of the well) were identified as oil tanks (14%) and streams (10%). Larger, more significant potential pollutant sources were also proximate (within one-half mile) to water supplies, according to participants. Thirty-five percent of respondents indicated that their water supply was located within one-half mile of a major farm animal...
operation and 17% indicated that their supply was within one half-mile of a field crop operation.

The type of material used for water distribution in each home was also described by participants on the questionnaire. The two most common pipe materials were plastic (62%) and copper (24%).

To properly evaluate the quality of water supplies in relation to the sampling point, participants were asked if their water systems had water treatment devices currently installed, and if so, the type of device. Forty-eight percent of participants reported at least one treatment device installed. The most commonly reported device was a sediment filter (45%).

Participants’ Perceptions of Household Water Quality

Participants were asked whether they perceived their water supply to have any of the following characteristics: (1) corrosive to pipes or plumbing fixtures; (2) unpleasant taste; (3) objectionable odor; (4) unnatural color or appearance; (5) floating, suspended, or settled particles in the water; and (6) staining of plumbing fixtures, cooking appliances/utensils, or laundry.

Staining problems were reported by 66% of clinic participants. Blue/green (31%) and rusty (28%) stains were the most reported.

An objectionable odor was reported by 7% of clinic participants, citing other or a rotten egg smell in their water. Seventeen percent of participants reported having floating, suspended, or settled particles in their water.

Ten percent reported unpleasant tastes and 10% also reported an unnatural appearance, mainly defined as other.

Bacteriological Analysis

Private water supply systems can become contaminated with potentially harmful bacteria and other microorganisms. Microbiological contamination of drinking water can cause short-term gastrointestinal disorders, such as cramps and diarrhea that may be mild to very severe. Other diseases that may be contracted from drinking contaminated water include viral hepatitis A, salmonella infections, dysentery, typhoid fever, and cholera.

Microbiological contamination of a water supply is typically detected with a test for total coliform bacteria. Coliform bacteria are present in the digestive systems of humans and animals and can be found in the soil and decaying vegetation. While coliform bacteria do not cause disease, they are indicators of the possible presence of disease causing bacteria, so their presence in drinking water warrants additional testing.

Since total coliform bacteria are found throughout the environment, water samples can become accidentally contaminated during sample collection. Positive total coliform bacteria tests are often confirmed with a re-test. If coliform bacteria are present in a water supply, possible pathways or sources, include: (1) improper well location or inadequate construction or maintenance (well too close to septic, well not fitted with sanitary cap), (2) contamination of the household plumbing system (e.g. contaminated faucet, water heater), and (3) contamination of the groundwater itself (perhaps due to surface water/groundwater interaction).

The presence of total coliform bacteria in a water sample triggers testing for the presence of E. coli bacteria. If E. coli are present, it indicates that human or animal waste is entering the water supply.

Of the 29 samples collected, 41% tested positive (present) for total coliform bacteria. Subsequent E. coli analyses for all of these samples showed that 3% of the samples tested positive for E. coli bacteria.

Program participants whose water tested positive (present) for total coliform bacteria were encouraged to retest their water to rule out possible cross contamination, and were given information regarding emergency disinfection, well improvements, and septic system maintenance. Any participant samples that tested positive for E. coli, were encouraged to take more immediate action, such as boiling water or using another source of water known to be safe until the source of contamination could be addressed and the water supply system disinfected. After taking initial corrective measures, participants were advised to have their water retested for total coliform, followed by testing for E. coli, if warranted. In addition, participants were provided with resources that discussed continuous disinfection treatment options.

Table 1, found at the end of this report, shows the general water chemistry and bacteriological analysis contaminant levels for the Nelson drinking water clinic participants.

Chemical Analysis

As mentioned previously, all samples were tested for the following parameters: iron, manganese, nitrate, chloride, fluoride, sulfate,
pH, total dissolved solids (TDS), hardness, sodium, and copper. Selected parameters of particular interest for the Nelson drinking water clinic samples are discussed below.

pH

pH is a measure of the acidity or alkalinity of a substance. The EPA suggests the pH for public drinking water be between 6.5 and 8.5. Of the 29 Nelson County clinic samples, 79% were below the recommended pH of 6.5, indicating acidic water. Although not a health concern in itself, acidic water may be corrosive and can potentially leach metals like copper and lead from plumbing components. An option for dealing with low pH water is to install an acid neutralizing filter, which raises pH by passing the water through a medium of calcite and/or magnesium oxide.

If the age of a home or the plumbing materials present in a home pointed to potential health problems associated with metals leaching into water, participants were encouraged to pursue lead testing, which is not currently available through the VAHWQP.

None of the clinic samples were above the recommended pH of 8.5. Water with a high pH level is characterized by a slippery feel, soda taste, and scaly deposits. Acid injection is used to lower pH levels, a process in which sulfuric, phosphoric, or hydrochloric acid is injected into the water supply.

Manganese

Manganese is a nuisance contaminant and does not present a health risk. The EPA recommended maximum contaminant level is 0.05 mg/L. Excessive manganese concentrations may give water a bitter taste and can produce black stains on laundry, cooking utensils, and plumbing fixtures.

Seven percent of clinic samples tested above 0.05mg/L. Treatment options for manganese include a water softener, reverse osmosis or distillation.

Conclusions

Participants were asked to complete a program evaluation survey following the interpretation meeting. Of those that completed the survey, 89% indicated they would test their water either annually or at least every few years. Twenty-two percent indicated that they would seek additional testing. Finally, 100% of respondents plan to discuss what they learned with others.

References

Additional Resources

For more information about the water quality problems described in this document, please refer to our website. Here you will find resources for household water testing and interpretation, water quality problems and solutions: www.wellwater.bse.vt.edu/resources.php

Acknowledgements

Many thanks to the residents Nelson County who participated in the drinking water clinic. The Water Quality Laboratory of the Department of Biological Systems Engineering and Soils Testing Laboratory of the Department of Crop and Soil Environmental Sciences at Virginia Tech were responsible for water-quality analyses, as well as data management. This document was prepared by Brian L. Benham, Associate Professor and Extension Specialist at Virginia Tech; Erin James Ling, Extension Water Quality Program Coordinator; Jen Pollard Scott, Research Assistant; Jessica Lutz, Environmental Research Specialist; and Mike Lachance, VCE Nelson Office.
Figure 1. The most common household water quality issues found in the 29 Nelson clinic participant samples were high levels of manganese, low pH, and the presence of total coliform bacteria.
Table 1. General water chemistry and bacteriological analysis contaminant levels for the Nelson County drinking water clinic participants (N=29). This program uses the EPA primary and secondary standards of the Safe Drinking Water Act, which are enforced for public systems, as guidelines for private water supplies.

<table>
<thead>
<tr>
<th>Test</th>
<th>EPA Standard</th>
<th>Average</th>
<th>Maximum Value</th>
<th>% Exceeding Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron (mg/L)</td>
<td>0.3</td>
<td>0.007</td>
<td>2.085</td>
<td>3.4</td>
</tr>
<tr>
<td>Manganese (mg/L)</td>
<td>0.05</td>
<td>0.013</td>
<td>0.185</td>
<td>6.9</td>
</tr>
<tr>
<td>Hardness (mg/L)</td>
<td>180</td>
<td>28.1</td>
<td>107.3</td>
<td>0</td>
</tr>
<tr>
<td>Sulfate (mg/L)</td>
<td>250</td>
<td>1.9</td>
<td>8.6</td>
<td>0</td>
</tr>
<tr>
<td>Chloride (mg/L)</td>
<td>250</td>
<td>2</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Fluoride (mg/L)</td>
<td>2.0/4.0</td>
<td>0.11</td>
<td>0.16</td>
<td>0</td>
</tr>
<tr>
<td>Total Dissolved Solids</td>
<td>500</td>
<td>56</td>
<td>168</td>
<td>0</td>
</tr>
<tr>
<td>pH</td>
<td>6.5 to 8.5</td>
<td>6.18</td>
<td>7.54</td>
<td>79.3(< 6.5)</td>
</tr>
<tr>
<td>Copper (mg/L)</td>
<td>1.0/1.3</td>
<td>0.004</td>
<td>0.289</td>
<td>0</td>
</tr>
<tr>
<td>Sodium (mg/L)</td>
<td>20</td>
<td>4.78</td>
<td>16.90</td>
<td>0</td>
</tr>
<tr>
<td>Nitrate - N (mg/L)</td>
<td>10</td>
<td>0.353</td>
<td>1.510</td>
<td>0</td>
</tr>
<tr>
<td>Total Coliform Bacteria</td>
<td>ABSENT</td>
<td>--</td>
<td>--</td>
<td>41.4</td>
</tr>
<tr>
<td>E. coli Bacteria</td>
<td>ABSENT</td>
<td>--</td>
<td>--</td>
<td>3.4</td>
</tr>
</tbody>
</table>