

Cross-Laminated Timber (CLT) panels Fact Sheet

Authored by Henry Quesada, Professor and Extension Specialist; Sailesh Adhikari, Research Associate, and Robert Smith, professor. Department of Sustainable Biomaterials, Virginia Tech.

What are CLT panels?

CLT panels are comprised of lumber or composites layers with boards stacked crosswise at 90-degree angles and glue together. See Figure 1. An odd number of layers, three to seven per panel, is common to fabricate CLT panels. Some of the companies in Europe are manufacturing up to nine layers.

Figure 1: Structural grade CLT layups. Source: (Fragiacomo et al., 2012)

History

CLT was invented in the early 1990s in central Europe and is now considered an alternative construction material to mid and high-rise buildings across the globe. Based on uses, CLT panels are two types: structural or non-structural. Structural CLT panels are used in structural construction and manufactured under the criteria specified by APA-PRG 320 standard in North America. However, nonstructural CLTs can be manufactured from any lumber species and types that satisfy the user requirements. Non-structural CLT panels are commonly used as access mats as an alternative to bolted mats. Table 1 shows a list of CLT manufacturing facilities in the USA.

Table 1: List of CLT manufacturers in the US

Company Name	City	State	Products		
DR Johnson	Riddle	OR	All CLTs		
SmartLAM	Columbia Falls	MT	All CLTs		
SmartLAM	Dothan	AL	All CLTs		
Freres Lumber	Lyons	OR	All CLTs		
Sterling	Phoenix	IL	CLT Mats only		
Sterling	Lufkin	ТХ	CLT Mats only		
Spartan Mat	Peach Bottom	PA	CLT Mats only		
Structurlam	Conway	AR	All CLTs		
Mercer Mass Timber	Spokane Valley	WA	All CLTs		
Vaagen Timbers	Colville	WA	All CLTs		
Texas CLT	Magnolia	AR	All CLTs		
Viking Mat Company	Eden Prairie	MN	CLT Mats only		
Yak Mat	Columbia Falls	MS	CLT Mats only		

North American Standard

In North America, CLT mills only qualify to produce CLT panels for structural applications after getting certified through the ANSI/APA-PRG 320 standard. The Engineered Wood Association grants the qualification, and each mill should certify both process and product for commercial production of CLT panels for structural application.

Lumber requirements

Sawn lumber for CLT manufacturing must be from softwood species with a specific gravity greater than 0.35. The American Lumber Standards Committee (ALSC) must qualify softwood species under PS 20 for manufacturing structural CLT panels. Lumber to be used in CLT manufacturing must be kiln-dried to a moisture content of 12±3%. Cross-laminated timber layers parallel to the outside layer must be a minimum of visually graded Number 2 and visually graded Number 3 for the perpendicular layers. The thickness of individual lumber must be 15.9 mm to 50.8 mm. The common lumber choice is 60.96 mm to 241.3 mm in width. Table 2 shows the approved CLT layouts and Table 3 lists the technical specifications of each approved CLT grade in the ANSI/APA-PRG 320 standard.

CLT Panel Manufacturing

Figure 2: Fingered jointed lumber.

The production process of the CLT panels starts with a quality check of the available lumber regarding sizes, moisture content, and lumber grade. First, the lumber is bonded lengthwise using finger joints (Figure 2). Table 2: CLT panels grade and specification details

CLT	Specification details.
Grades	
E1	1950f-1.7E Machine Strength Rated (MSR) Spruce-Pine-Fir (SPF) in all
	parallel lavers and No. 3 SPF in all
	perpendicular layers
E2	1650f-1.5E MSR Douglas Fir-Larch
	lumber in all parallel layers and No.
	3 Douglas Fir-Larch lumber in all
	perpendicular layers
E3	1200f-12E MSR, Northern Species,
	Eastern Softwoods or Western
	Woods in all parallel layers and No.
	3, Northern Species, Eastern
	Softwoods or Western Woods all
F 4	perpendicular layers
E4	All Parallel layers: 19501 -1.7E MSR
	Southern pine lumber and All Porpondicular layors: No. 3
	Southern nine lumber
F5	All Parallel lavers: 1950f -1 7F MSR
	Hem-fir lumber and All
	Perpendicular lavers: No. 3 Hem-fir
	lumber
V1	All Parallel layers: No. 2 Douglas
	Fir-Larch and All Perpendicular
	layers: No. 3 Douglas Fir-Larch
	lumber
V1(N)	All Parallel layers: No. 2 Douglas
	Fir-Larch (North) and All
	Perpendicular layers: No. 3 Douglas
1/2	All Parallel lavors: No. 1/No. 2 SPE
VZ	lumber and All Perpendicular layers
	No 3 SPE lumber
V3	All Parallel layers: No. 2 Southern
	pine lumber and All Perpendicular
	layers: No. 3 Southern pine lumber
V4	All Parallel layers: No. 2 SPF lumber
	and All Perpendicular layers: No. 3
	SPF lumber
V5	All Parallel layers: No. 2 Hem-fir
	lumber and All Perpendicular layers:
C1	NO. 3 Hem-fir lumber
51	22501-1.5E LVL IN all longitudinal
\$2	1000f 1 3E SL in all longituding
52	and transverse lavers
S3	1750f-1 3F OSL in all longitudinal
	and transverse layers

Virginia Cooperative Extension Virginia Tech • Virginia State University

www.ext.vt.edu

Table 3: Design values of CLT panels based on grade and number of layers. Adopted from (APA-PRG 320, 2018)

		Strength Value								
CLT grade	Layers	Major Strength Direction				Minor Strengt	Minor Strength Direction			
		FbSeff,0 N -mm/m	Eleff, 0 N-mm²/m	GA eff, 0 (N/m of width)	Vs,0 (kNhn of width)	FbSeff,90 N - mm/m	Eieff 90 N-mm²/m	GA, eff 90 (N/m of width)	Vs,90 (kNhn of width)	
E1	3	42	1,088	7.3	35	1.4	32	9.1	12	
	5	98	4,166	15	58	12	837	18	95	
	7	172	10,306	22	82	29	3,220	27	58	
E2	3	36	958	8	44	0.94	36	8.2	15	
	5	83	3,674	16	74	8.2	930	16	44	
	7	146	9,097	24	103	19	3,569	25	74	
E3	3	26	772	5.3	30	0.92	23	6.4	10	
	5	60	2,956	11	50	8	605	13	30	
	7	106	7,313	16	70	18	2,325	19	50	
E4	3	36	958	8	37	1.4	36	8.2	12	
	5	83	3,674	16	62	12	930	16	37	
	7	146	9,097	24	87	29	3,569	25	62	
E5	3	15	1,023	8	44	0.94	36	8.7	15	
	5	35	3,922	16	74	8.2	930	17	44	
	7	61	9,708	24	103	19	3,571	26	74	
V1	3	18	884	7.2	35	1.4	32	7.5	12	
	5	41	3,388	14	58	12	837	15	95	
	7	72	8,388	22	82	29	3,213	23	58	
V1(N)	3	17	1,023	8	37	1.4	36	8.7	12	
	5	38	3,922	16	62	12	930	17	37	
	7	67	9,708	24	87	29	3,571	26	62	
V2	3	51	1,226	8.9	43	6.9	47	8.9	14	

Continued from previous Table										
		Strength Value								
CLT grade	Layers	Major Strength Direction				Minor Strength Direction				
		FbSeff,0 N -mm/m	Eleff, 0 N-mm²/m	GA eff, 0 (N/m of width)	Vs,0 (kN/n of width)	FbSeff,90 N -mm/m	Eieff 90 N-mm²/m	GA, eff 90 (N/m of width)	Vs,90 (kNhn of width)	
	5	117	4,704	18	71	60	1,226	18	43	
	7	207	11,647	27	99	138	4,704	27	71	
V3	3	43	1,059	7.7	49	5.8	41	7.7	16	
	5	99	4,064	15	81	51	1,059	15	49	
	7	175	10,064	23	113	116	4,064	23	81	
V4	3	0.4	1,059	7.7	37	5.4	41	7.7	12	
	5	91	4,064	15	62	47	1,059	15	37	
	7	161	10064	23	87	107	4,064	23	62	
V5	3	42	1,088	7.3	35	1.4	32	9.1	12	
	5	98	4,166	15	58	12	837	18	95	
	7	172	10,306	22	82	29	3,220	27	58	
S1	3	51	1,226	8.9	43	6.90	47	8.9	14	
	5	117	4,706	18	71	60	1,226	18	43	
	7	207	11,647	27	99	138	4,706	27	71	
S2	3	43	1,059	7.7	49	5.80	41	7.7	16	
	5	99	4,064	15	81	51	1,059	15	49	
	7	175	10,064	23	113	116	4.064	23	81	
S2	3	43	1,059	7.7	49	5.80	41	7.7	16	
	5	99	4,064	15	81	51	1,059	15	49	
	7	175	10,064	23	113	116	4.064	23	81	

Virginia Cooperative Extension Virginia Tech • Virginia State University

After finger-jointing, the lumber is dressed (surfaced) all four sides to ensure the required width and thickness and are trimmed to the desired length according to the designed dimension for parallel and perpendicular layers (Figure 3). All panels are assembled using a similar technique to plywood production: first, the bottom layer is placed on glue bench and the machine spreads the adhesive on top before laying adjacent perpendicular layers. See Figure 4.

After applying adhesive, each panel is immediately pressed to form a solid CLT structure, see Figure 5. The pressing force must meet the specifications of the adhesive and lumber species. Equally distributed adequate pressure is essential over the whole CLT panel layer surface to guarantee a consistent bond line.

Figure 3: Lumber cut to CLT lengths after finger jointing.

Cross-laminated timber panels from the press come with excess adhesive on the edge of the panels. Therefore, this excess must be removed by edge trimming. Finally, all panels are dressed properly for finishing. CLT panels are customized according to the end-use by cutting, trimming, milling, and drilling to match the design specifications, see Figure 6.

CLT manufacturing's final step is product labeling using manufacturing, logistics, and on-site assembly information. The finished product is packaged to protect it from harsh weather conditions and prepared for shipping. All the assembly parts are collected at the installation site, where the structure will be constructed.

Figure 4: Vacuum stacking of the lumber for layups.

Advantages of CLT Panels

The sustainable nature of wood due to carbon sequestration and minimum embodied energy is the major environmental advantage of CLT panels compared to steel and concrete construction. Some studies concluded that an average of 26.5% reduction in global warming potential could be achieved with CLT construction compared to concrete and other construction materials (Vanova et al., 2021).

CLT panels have ease of factory prefabrication of the parts and design flexibility. This allows for precise openings for doors, windows, and other mechanical elements of the structure. Figure 7 shows the building Dalston Lane, the largest CLT structure in the World.

CLT panel construction helps to reduce onsite work and assembly. It is estimated to cut construction time by a minimum of 20% when compared to concrete construction. CLT construction also helps to reduce waste on construction sites due to prefabrication practice (Augustus; Raymond, 2019).

Figure 5: CLT panel pull-out form press and ready for CNC work.

Figure 6: CNC machine working on the panel to cut into final dimension.

CLT panels have a thermal conductivity of 0.13 W/mK, better than steel and concrete structures, providing better insulation properties and CLT panels provide outstanding structural stability and stiffness. The cross-laminating of layers exhibits relatively high in-plane and out-of-plane strength, resulting in higher load-bearing capacity.

The strength and cross lamination make CLT capable of a two-way span, like reinforced concrete, providing the ease of transferring the load into twostructural directions. Higher seismic and fire resistance ability of CLT panels is the major advantage over traditional construction materials. The fibrous nature of wood and assembly connection of CLTs provides seismic flexibility. A charred layer is formed on the CLT surface during the fire, preventing oxygen from the outside and limiting the fire from spreading much.

Figure 7: Dalston Lane, the Largest CLT Building in the World. Source: (Schuler Timothy A., 2018)

Construction with CLT panels results in lowerweight buildings than traditional construction systems. As a result, it requires minimum foundation work for construction.

Disadvantages of CLT Panels

Currently CLT panels are more expensive than traditional construction such as steel or concrete. Its price depends on the need for transportation, foundation work, assimilation cost, and CLT grade. Transportation is a significant cost factor, so it is less attractive if the construction requires longdistance hauling. CLT panels could be more costeffective for mid, and high-rise buildings only, so they will not be the primary choice for residential housing to compete with timber frame construction.

Limited availability and a long waiting time are other limitations as there are very few CLT industries in operation. CLT manufacturing requires huge lumber volumes and is adding additional demand for structural grade lumber.

Finally, obtaining desired acoustic insulation may be a problem and it requires the use of additional materials such as light concrete to increase acoustic insulation.

Acknowledgment

The Department of Sustainable Biomaterials at Virginia Tech would like to thank the Softwood Export Council (SEC) for providing the funding for the production of this fact sheet.

References

APA-PRG 320. (2018). Standard for Performance-Rated Cross-Laminated Timber -American Standard. <u>www.ansi.org</u>

Augustus; Raymond, E. (2019, November 20). CLT - What is it and when does it make sense? — CE Solutions - Structural Engineers. <u>https://www.cesolutionsinc.com/blog/2019/11/20</u> <u>-advantages-clt-concrete-steel-cpcd5</u>

Fragiacomo, M., Menis, A., Clemente, I., Bochicchio, G., & Ceccotti, A. (2012). Fire Resistance of Cross-Laminated Timber Panels Loaded Out of Plane. Journal of Structural Engineering, 139(12), 04013018. <u>https://doi.org/10.1061/(ASCE)ST.1943-541X.0000787</u>

 Schuler Timothy A. (2018). Dalston Works, the Largest CLT Building in the World | Architect Magazine.
<u>https://www.architectmagazine.com/technology/a</u> <u>rchitectural-detail/dalston-works-the-largest-clt-</u> building-in-the-world o

Vanova, R., Stompf, P., Stefko, J., & Stefkova, J. (2021). Environmental Impact of a Mass Timber Building—A Case Study. Forests 2021, Vol. 12, Page 1571, 12(11), 1571. https://doi.org/10.3390/F12111571

Visit Virginia Cooperative Extension: ext.vt.edu

Virginia Cooperative Extension is a partnership of Virginia Tech, Virginia State University, the U.S. Department of Agriculture, and local governments. Its programs and employment are open to all, regardless of age, color, disability, gender, gender identity, gender expression, national origin, political affiliation, race, religion, sexual orientation, genetic information, military status, or any other basis protected by law.

2022

CNRE-143NP