Income Over Feed Costs in the Dairy Enterprise

Gonzalo Ferreira, Dairy Management Extension Specialist, Dairy Science, Virginia Tech

Typically, feed costs are directly related to milk production, so the more you feed, the more you produce. However, milk production is not necessarily related to profitability. Production-oriented management, which focuses on maximizing outputs (i.e., milk yield) through increased utilization of inputs (i.e., feed), does not necessarily ensure the dairy business will be profitable.

Monitoring financial performance and production efficiency on a frequent basis is necessary for the economic sustainability of the dairy business at all times, and it is critical during times of low milk prices, high feed prices, or both. Income over feed costs (IOFC) is one of numerous financial performance indicators that managers can apply to support profitable decision-making. Calculating, understanding, and using IOFC in day-to-day management is the focus of this publication.

The Essence: Milk Yield, Milk Price, and Feed Costs

Income over feed costs is defined as the portion of income from milk sold that remains after paying for purchased and farm-raised feed used to produce milk. In other words, IOFC is the net income after paying feed costs.

For simplicity, IOFC is typically calculated on a per cow and day basis. For this calculation, three parameters must be known: milk yield (lb/cow.day), milk price ($/cwt), and feed costs ($/cow.day). To calculate feed costs, the ingredient composition of the diet being fed (lb/cow.day) and the price of each ingredient ($/ton) must be known. Table 1 provides an example of how to calculate IOFC.

Feed expenses are the major expenses at the dairy farm. Using the figures in the table 1 example, 56.2 percent of income from milk sales was used to feed the cows ($7.73/$13.75 x 100). The remaining $6.02, which is the IOFC, is the amount left to pay other expenses, such as labor, family living, veterinary supplies, repairs, fuel, interest on loans, and depreciation, to name a few.

Table 1. Procedure for estimating income over feed costs for a lactating cow.

Income: $13.75/cow.day
Milk production: 76.4 lb/cow.day
Milk price: $18/cwt
76.4 lb/cow.day @ $18/cwt
Feed costs: $7.73/cow.day
Corn silage: 55 lb/cow.day @ $38/ton = $1.05/cow.day
Alfalfa hay: 6 lb/cow.day @ $200/ton = $0.60/cow.day
Concentrate: 27 lb/cow.day @ $450/ton = $6.08/cow.day
Income over feed costs: $6.02/cow.day
Individual Milk Yield Versus Milk Tank Yield

There are certain hidden factors that can affect the interpretation of IOFC. One such factor is the difference between produced and shipped milk. To illustrate this, consider a dairy herd with 360 milking cows, 19 of which are in the sick pen with their milk discarded. The sick cows and their milk weights are not recorded in the daily shipments (figure 1), but they are fed the same diet as the 341 nonsick cows. To facilitate the example, we will assume that all cows (i.e., sick and nonsick) are fed the diet described in table 1. When calculated on an individual milk-yield basis, IOFC is the same as the one calculated in table 1 ($13.75 – $7.73 = $6.02). Although this is technically correct, the result will be different when the whole herd is considered. Let us now see how this differs and why, considering the whole herd is important to management.

According to the record of daily shipments in figure 1, the average income on a herd basis is $4,689 per day (26,050 lb/day x $18/cwt), the total feed cost on a herd basis is $2,636 per day (341 cows x $7.73/cow.day), and the IOFC on a herd basis is $2,053 ($4,689 – $2,636; Case A in table 2). However, when the feed costs of the 19 sick cows are ignored, this calculation will result in an overestimation of IOFC. When considering all 360 milking cows being fed the aforementioned diet, the total feed cost on a herd basis is $2,783 (360 cows x $7.73/cow.day), and the IOFC on a herd basis is $1,906 ($4,689 – $2,783; Case B in table 2). This is 7.2 percent less IOFC on a herd basis. In addition to not adding income to the business, sick cows still need to be fed until they are healed or culled. Therefore, feeding sick cows is a hidden expense that dairy farmers typically ignore, which is why measuring IOFC on a herd basis gives a broader perspective of overall management.

In summary, calculating IOFC on a herd basis can give a more accurate indication of the financial performance of the herd than calculating IOFC on an individual cow basis.

<table>
<thead>
<tr>
<th>Date</th>
<th>Morning milking</th>
<th>Evening milking</th>
<th>Total</th>
<th>Cows milked</th>
<th>Milk yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/1/15</td>
<td>14,179</td>
<td>11,601</td>
<td>25,780</td>
<td>341</td>
<td>75.6</td>
</tr>
<tr>
<td>3/2/15</td>
<td>14,306</td>
<td>11,705</td>
<td>26,011</td>
<td>340</td>
<td>76.5</td>
</tr>
<tr>
<td>3/3/15</td>
<td>14,421</td>
<td>11,799</td>
<td>26,220</td>
<td>341</td>
<td>76.9</td>
</tr>
<tr>
<td>3/4/15</td>
<td>14,160</td>
<td>11,586</td>
<td>25,746</td>
<td>342</td>
<td>75.3</td>
</tr>
<tr>
<td>3/5/15</td>
<td>14,235</td>
<td>11,647</td>
<td>25,882</td>
<td>342</td>
<td>75.7</td>
</tr>
<tr>
<td>3/6/15</td>
<td>14,348</td>
<td>11,739</td>
<td>26,087</td>
<td>342</td>
<td>76.3</td>
</tr>
<tr>
<td>3/7/15</td>
<td>14,653</td>
<td>11,989</td>
<td>26,642</td>
<td>340</td>
<td>78.4</td>
</tr>
<tr>
<td>3/8/15</td>
<td>14,414</td>
<td>11,793</td>
<td>26,207</td>
<td>340</td>
<td>77.1</td>
</tr>
<tr>
<td>3/9/15</td>
<td>14,229</td>
<td>11,642</td>
<td>25,871</td>
<td>340</td>
<td>76.1</td>
</tr>
<tr>
<td>3/10/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/11/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/12/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Procedure for estimating income over feed costs on a herd basis.

<table>
<thead>
<tr>
<th></th>
<th>Case A: Ignoring feeding of sick cows</th>
<th>Case B: Considering feeding of sick cows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income:</td>
<td>$4,689/day</td>
<td>$4,689/day</td>
</tr>
<tr>
<td>Shipped milk</td>
<td>26,050 lb/day</td>
<td>26,050 lb/day</td>
</tr>
<tr>
<td>Milk price</td>
<td>$18/cwt</td>
<td>$18/cwt</td>
</tr>
<tr>
<td>Feed costs:</td>
<td>$2,636/day</td>
<td>$2,783/day</td>
</tr>
<tr>
<td>Fed cows</td>
<td>341</td>
<td>360</td>
</tr>
<tr>
<td>Feed cost/cow.day</td>
<td>$7.73/cow.day</td>
<td>$7.73/cow.day</td>
</tr>
<tr>
<td>Income over feed costs</td>
<td>$2,053/day</td>
<td>$1,906/day</td>
</tr>
</tbody>
</table>

Figure 1. Daily shipments (lb) and milk yield (lb/cow.day) report for the first nine days of the month.
Income Over Feed Costs Beyond Lactating Cows

The composition of the herd also needs to be considered at the time IOFC is calculated. In every herd there is a group of dry cows (i.e., nonlactating cows) that also needs to be fed, although they generate no income. Therefore, there is a negative IOFC for dry cows (table 3).

On a whole-herd basis, having a smaller or larger proportion of dry cows can affect IOFC significantly. Consider Herd A with 86 milking cows and 14 dry cows, and Herd B with 80 milking cows and 20 dry cows (table 4). For simplicity, in this example we will use the same values from tables 1 and 3, and we will assume that all milk produced is shipped and sold. On an individual-cow basis, both herds have an IOFC equal to $6.02/cow.day. However, if we estimate IOFC on a whole-herd basis, the conclusions might be different. While Herd A has an IOFC equal to $475.00/day (86 milking cows x $6.02/cow.day + 14 dry cows x −$3.05), Herd B has an IOFC equal to $420.60 (80 milking cows x $6.02/cow.day + 20 dry cows x −$3.05).

Income: $0/cow.day
Feed costs: $3.05/cow.day
Corn silage: 30 lb/cow.day @ $38/ton = $0.57/cow.day
Grass hay: 12 lb/cow.day @ $150/ton = $0.90/cow.day
Concentrate: 9 lb/cow.day @ $350/ton = $1.58/cow.day
Income over feed costs: $0/cow.day – $3.05/cow.day = −$3.05

Table 3. Procedure for estimating income over feed costs for a dry cow.

<table>
<thead>
<tr>
<th>Income: $0/cow.day</th>
<th>Feed costs: $3.05/cow.day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn silage: 30 lb/cow.day @ $38/ton = $0.57/cow.day</td>
<td>Grass hay: 12 lb/cow.day @ $150/ton = $0.90/cow.day</td>
</tr>
<tr>
<td>Concentrate: 9 lb/cow.day @ $350/ton = $1.58/cow.day</td>
<td>Income over feed costs: $0/cow.day – $3.05/cow.day = −$3.05</td>
</tr>
</tbody>
</table>

Income over feed costs might look good when analyzed on an individual-cow basis, but it is quite different when analyzed on a whole-herd basis. In this case, there is an 11.5 percent difference in IOFC between calculating it on an individual-cow basis and a whole-herd basis.

Calculating IOFC also helps herd managers make decisions. For example, many times herd managers might decide to stop milking a cow earlier than expected when IOFC equals zero or, alternatively, “as long as it pays its feed, it will be milked.” Although

<table>
<thead>
<tr>
<th>Table 4. Procedure for estimating income over feed costs on a whole-herd basis considering the composition of the whole herd.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herd A</td>
</tr>
<tr>
<td>IOFC milking cows</td>
</tr>
<tr>
<td>Milking cows</td>
</tr>
<tr>
<td>Individual IOFC</td>
</tr>
<tr>
<td>IOFC dry cows</td>
</tr>
<tr>
<td>Dry cows</td>
</tr>
<tr>
<td>Individual IOFC</td>
</tr>
<tr>
<td>Herd IOFC</td>
</tr>
</tbody>
</table>
this is reasonable, it is also important to consider that
drying cows in advance because of a neutral IOFC can
be more expensive than keeping them milking. This is
true even at a negative IOFC. For example (table 5),
a 190-day pregnant and lactating cow producing 40
lb/day of milk at $18/cwt and consuming a $7.73/day
lactating cow diet has an IOFC equal to –$0.53/day.
However, once that same cow is dried and consumes a
$3.05/day nonlactating diet, she has an IOFC equal to
–$3.05/day. In conclusion, money losses are greater by
drying a cow off early than by keeping her milking.

It is worth clarifying that having a high proportion of
lactating or milking cows will not necessarily translate
into greater IOFC. Having a balanced proportion of
dry cows, typically between 14 and 16 percent of the
herd, implies that new calvings or freshenings are
expected. These new cows entering the herd should be
translated into high-producing lactating cows, which
should lead to higher IOFC. Not having these highly
efficient cows would definitely be detrimental for the
economic sustainability of the farm.

Additional Remarks

Income over feed costs should be calculated and
monitored frequently, although this should not become
an obsessive behavior. Milk prices typically change
every month, so calculating IOFC on a monthly basis
can be a good starting point. Also, IOFC should be
revised when sudden changes in feed prices occur or
when the nutritionist recommends diet changes.

When calculating IOFC on a herd basis, do not
overlook the big picture of herd dynamics. In some
herds, calvings may be more concentrated in certain
months of the year than in others. If this happens, a
lower IOFC can be expected during the period with a
high proportion of dry cows within the herd.

When benchmarking IOFC, be aware that differences
between farms can be related to multiple factors, such
as pricing of forages, pricing of purchased or farm-
grown grains, or milk price (especially if there is milk
commission base included in the latter). Despite the
possibility of benchmarking IOFC between farms,
it is important to stress that the best use of IOFC is
to benchmark against the goals of the farm itself. In
other words, regardless of the IOFC in other farms, the
question to ask is, “Is my IOFC high enough so that
my farm is profitable?”

Take Home Messages

- Estimating IOFC is a good way for knowing where
 the business stands financially.
- Monitor your IOFC frequently, especially with
 scenarios of low milk prices, high commodities
 prices, or both.
- Estimate IOFC on both an individual-cow and a
 lactating-herd basis.
- Estimate IOFC considering nonlactating cows,
 especially in cases where dry cows are fed a totally
 mixed ration diet.

Acknowledgements

The author is thankful to Cynthia Martel, Virginia
Cooperative Extension agent, Franklin County Office;
Laura Siegle, Virginia Cooperative Extension agent,
Amelia County Office; Gordon Groover, Department
of Agriculture and Applied Economics, Virginia
Tech; and Bob James, professor, Department of Dairy
Science, Virginia Tech, for reviewing this article.

This project was supported in part by USDA-NIFA
Hatch Project VA-160025 and USDA-NIFA Multistate
Project VA-136291 (NC-2042, Management Systems
to Improve the Economic and Environmental
Sustainability of Dairy Enterprises).

Table 5. Effect of drying a cow based on its income over feed costs.

<table>
<thead>
<tr>
<th></th>
<th>Milking cow</th>
<th>Dry cow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income from milking cows</td>
<td>$7.20/cow.day</td>
<td>$0/cow.day</td>
</tr>
<tr>
<td>Milk yield</td>
<td>40 lb/day</td>
<td>0 lb/day</td>
</tr>
<tr>
<td>Milk price</td>
<td>$18/cwt</td>
<td>$18/cwt</td>
</tr>
<tr>
<td>Feed costs</td>
<td>$7.73/cow.day</td>
<td>$3.05/cow.day</td>
</tr>
<tr>
<td>Income over feed costs</td>
<td>–$0.53/day</td>
<td>–$3.05/day</td>
</tr>
</tbody>
</table>