Resources by Zachary M. Easton
Title | Available As | Summary | Date | ID | Author |
---|---|---|---|---|---|
Mitigation of Greenhouse Gas Emissions in Agriculture | In this publication, information is presented on how to
increase farm productivity while potentially reducing
greenhouse gas* (GHG) contributions from agricultural
production. Some of the practices may be familiar
to many producers, such as building soil organic matter
(SOM) or increasing nitrogen fertilization efficiency,
but many producers may not know that these same productivity-boosting activities also help to reduce GHG
emissions and their impact on climate change. While
informative to the producer, this publication will also
inform those with an interest in both agriculture and
the environmental impact of GHG emissions on the
atmosphere. |
Apr 3, 2019 | BSE-105 (BSE-251P) | ||
Climate Change Adaptation for Agriculture: Mitigating Short- and Long-Term Impacts of Climate on Crop Production | Climate change and climate variability pose a great risk to agricultural production and farm livelihoods, and producers will need to adapt to a changing climate that is expected to be significantly more variable in order to meet these challenges. |
Sep 24, 2014 | BSE-109P | ||
Hydrology Basics and the Hydrologic Cycle | This fact sheet presents and explains some common concepts in hydrology and the hydrologic cycle. The science or study of hydrology focuses on the distribution, occurrence, circulation, and properties of water in the environment. |
Nov 4, 2020 | BSE-191P | ||
Soil and Soil Water Relationships | This publication presents and discusses concepts that are fundamental to understanding soil, water, and plant relationships and the soil water balance.
Knowledge about soil water relationships can inform the decision-making process in agricultural operations or natural resource management, such as determining what crops to plant, when to plant them, and when various management practices should be scheduled. Understanding these concepts is useful for addressing both agronomic and policy issues related to agricultural water management. |
Mar 1, 2021 | BSE-194P | ||
Communicating Climate Change to Agricultural Audiences | The objectives of this publication are (1) to outline
some climate-related challenges facing agriculture,
(2) to address challenges in communicating climate
change issues, and (3) to propose best practices when
attempting to communicate climate change issues to
agricultural stakeholders. Extension educators and
agricultural service providers can use the information
presented here to develop outreach and educational
programs focused on the impacts of climate change,
the effects of climate change on agricultural
production, and the best ways to motivate behavior
change. |
Mar 3, 2022 | BSE-203P (BSE-344NP) | ||
Factors When Considering an Agricultural Drainage System | Jun 7, 2022 | BSE-208P (BSE-343P) | |||
Managing Drainage From Agricultural Lands with Denitrifying Bioreactors in the Mid-Atlantic | This publication highlights recent advances in adapting denitrifying bioreactors developed in the Midwest to the Mid-Atlantic region. Denitrifying bioreactors are edge-of-field management practices that harness the activity of soil bacteria to remove excess nitrogen from drainage waters. Agricultural drainage is a significant source of nutrients to the Chesapeake Bay and important to manage. Although challenges remain with respect to adapting designs to treat ditch drainage, denitrifying bioreactors hold promise to yield water quality improvements in the Chesapeake Bay watershed. |
Dec 11, 2023 | BSE-234P (BSE-355P) | ||
How Do Stream Buffers Reduce the Offsite Impact of Pollution? | Oct 31, 2022 | BSE-38NP (BSE-216NP) | |||
Denitrification Management | Feb 28, 2023 | BSE-54P (BSE-347P) | |||
Denitrifying Bioreactors: An Emerging Best Management Practice to Improve Water Quality | Denitrifying bioreactors (DNBRs) are an alternative best management practice (BMP) that can reduce the amount of nitrogen reaching surface waters. DNBRs function by supporting soil microorganisms that are capable of denitrification in a favorable environment. |
Dec 8, 2023 | BSE-55P (BSE-354P) | ||
VCE Ag Today - Agricultural Drainage | Apr 2, 2021 | VCE-1027-42NP |